Coordinated by i2CAT
Started at: 01-11-2019
Ends on: 30-11-2022
Budget: € 4,999,965
Areas: 5G & IoT - Software Networks
Despite the progress of last years, 5G today is not yet at a stage of complete achievement of the promised performances and functions: different application profiles (eMBB, URLLC, mMTC) do not easily coexist in network slices; slicing is casted in various different forms; network analytics are not at end-to-end scope; services do not span multiple operator domains yet.
5GZORRO consortium envisions the evolution of 5G to achieve truly production-level support of diverse Vertical applications, which coexist on a highly pervasive shared network infrastructure, through automated end-to-end network slicing, across multiple operators and infrastructure/resource providers, who can share heterogeneous types of resources (spectrum, virtualized radio access, virtualized edge/core).
5GZORRO uses distributed Artificial Intelligence (AI) to implement cognitive network orchestration and management with minimal manual intervention (Zero-Touch Automation). Distributed Ledger Technologies (DLT) are adopted to implement flexible and efficient distributed security and trust across the various parties involved in a 5G end-to-end service chain. With these, we can implement an evolved 5G Service Layer for Smart Contracts among multiple non-trusted parties, to allow SLA monitoring, spectrum sharing, intelligent and automated data-driven resource discovery and management. Our cross domain security & trust orchestration coupled with service lifecycle automation can enforce security policies in multi-tenant and multi-stakeholder environments.
5GZORRO target stakeholders are telecom operators, vertical slice owners/operators, spectrum owners, regulators, passive/ active facility owners, many of which are in our consortium of 13 top 5G players from 7 different EU countries.
Three use cases will validate the research in 5GBarcelona and 5TONIC/Madrid test facilities: Smart Contracts for Ubiquitous Computing/Connectivity, Dynamic Spectrum Allocation, and Pervasive virtual CDNs over 3rd-party edge resources.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871533.