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Abstract.

Distributed Space Systems (DSS) are gaining prominence in the space indus-
try due to their ability to increase mission performance by allowing cooperation
and resource sharing between multiple satellites. In DSS where communication
between heterogeneous satellites is necessary, achieving autonomous cooperation
while minimizing energy consumption is a critical requirement, particularly in
sparse constellations with nano-satellites. In order to minimize the functioning time
and energy consumed by the Inter-Satellite Links (ISL) established for satellite-to-
satellite communication, their temporal encounters must be anticipated. This work
proposes an autonomous solution based on Supervised Learning that allows het-
erogeneous satellites in circular polar Low-Earth Orbits to predict their encoun-
ters, given the Orbital Elements (OE) and assuming isotropic antenna patterns. The
model performance is evaluated and compared in two different scenarios: 1) a sim-
plified scenario assuming that satellites follow Kepler orbits and 2) a realistic sce-
nario assuming that satellites follow Simplified General Perturbations 4 (SGP4) or-
bits. This work could be considered the first stage of a promising and alternative
approach in the field of DSS.
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1. Introduction

In recent years, the space industry has undergone a significant shift toward the imple-
mentation of Distributed Space Systems (DSS) [1]. As opposed to traditional monolithic
systems, DSS consists of multiple satellites that communicate and coordinate their ac-
tivities to increase the overall mission performance and provide global and continuous
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coverage for applications such as telecommunications, navigation, and remote sensing.

DSS requiring satellite-to-satellite communications gain importance with the defini-
tion of Non-Terrestrial Networks (NTN) and sixth generation (6G). Due to the satellites’
dynamics, the connections established for satellite-to-satellite communications, known
as Inter-Satellite Links (ISL), are characterized by a limited lifetime. In order to mini-
mize the functioning time and energy consumed by the ISL, these temporal encounters
must be anticipated, especially in sparse constellations where the connections can be
sporadic.

The traditional solution for satellite encounter prediction is based on deterministic
and centralized on-ground orbit propagation [2], [3]. This approach utilizes an orbital
model to propagate the satellite’s initial state, which is encoded in the Two-line Elements
(TLE). Given the satellite trajectories and assuming isotropic antennas, the encounters
can be scheduled defining a maximum threshold distance for communication. While on-
ground propagation solutions can generate precise contact plans, the centralized nature
of these solutions makes them unsuitable for DSS with heterogeneous satellites since it
would require substantial cooperation efforts between different stakeholders. To over-
come these limitations, new investigations are moving towards deterministic and decen-
tralized solutions, providing autonomy to the satellites [4]. However, these techniques
are still based on orbital propagation, which can result in a high processing cost for
satellites with limited resources, such as nano-satellites. To avoid orbital propagation
while keeping a decentralized and autonomous solution, authors in [5] have designed
predictive algorithms to self-learn and self-construct the contact plan. However, in order
to mathematically formulate the solution, they apply some linearizations only valid for
circular and same-high satellites.

Recent studies have investigated the use of Graph Neural Networks (GNNs) together
with Recurrent Neural Networks (RNNs) to model the temporal evolution of dynamic
systems and predict future behavior based on past data [6–12]. The feasibility of treating
a constellation as a time-evolving graph has been studied in [13] but discarded due to its
complexity, poor performance, and strong dependency on past ground-truth data. How-
ever, new under-revision studies [14] are further investigating in this promising direction.

Building on a previous publication [15], the current work presents some advances
in the proof of concept of using supervised learning to predict the contact plans between
heterogeneous satellites. Concretely, this work presents and compares the results of pre-
dicting the encounters between Low Earth Orbit (LEO) satellites with isotropic antenna
radiation patterns in two different scenarios: 1) ideal scenario assuming that satellites
follow Kepler orbits, and 2) realistic scenario assuming that satellites follow Simpli-
fied General Perturbations 4 (SGP4) model, which accounts for perturbations caused by
Earth’s shape and atmospheric drag. In both scenarios, the same model architecture and
input data are used. Even though the computation cost of the approach is a crucial point,
this work focuses on obtaining good prediction performances. The analysis of the infer-
ence time and resources is left for future work.
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The remainder of the article is structured as follows. Section 2 defines the problem
statement, introducing the datasets used for training, validation, and testing. Section 3
details the SL model architecture used to fit the input and output data. Section 4 presents
the model performance in the validation and test set and compares the results obtained
with the two different orbital models. Finally, Section 5 concludes the paper with a sum-
mary of keyfindings and suggestions for future research in this area.

2. Problem statement

The encounter prediction problem consists in predicting the communication opportuni-
ties between any pair of satellites at any time. This problem is directly related to the
communication features of the satellites and their trajectories. In this case, an isotropic
antenna pattern is assumed for all the satellites. Therefore, having an encounter means
having a satellite-to-satellite distance lower than a given threshold. Concerning satellite
trajectories, both Kepler and SGP4 models are used and compared to propagate the ini-
tial state of the satellites.

(a) Block diagram showing the most important blocks
used for data generation, model training and model
evaluation

(b) Satellite-to-satellite distance and thresh-
old distance.

(c) Output binary sequence of encounters
with 576 samples corresponding to 48 hours
with 5 minutes discretization.

Figure 1. Encounter prediction diagram, together with an example of the satellie-to-satellie distance and the
derived binary sequence of encounters

The solution proposed in this work consists in training a SL model with a large
set of input-output pairs. Figure 1a illustrates a simplified diagram of the three main
steps that define the solution: data generation, model training, and model evaluation. The
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role of the data generation part is to create the input and output data used for training,
validation, and testing. On the one hand, the input data contains the Orbital Elements
(OE) for different satellite pairs, a set of six parameters that locate a satellite by uniquely
identifying its orbit shape, size, and orientation. Both training and validation input data
are synthetically generated from 1000 different OE random values within the range for
circular, polar, and low orbits defined in Table 1. Notice that, since all orbits are circular,
both the eccentricity (e) and the argument of periapsis (ω) are always zero and can be
excluded from the input set. As an example, Table 2 presents the first six rows of the
input training data, featuring the satellite pairs 0-1, 0-2, 1-0, 1-2, 2-0, and 2-1. On the
other hand, the output ground-truth data is the binary time sequence that determines
when the satellite-to-satellite distance is below a given upper bound threshold set to
2000 kilometers (see Figs. 1b and 1c). To determine the satellite-to-satellite distance,
it is assumed that the OE values are defined at the exact same moment in time, which
coincides with the start of the encounter signal. Each encounter signal is characterized by
a set of 576 binary output features, representing a total duration of 48 hours discretized
into 5-minute intervals. It is important to note that these output data points are directly
linked to both the input data and the orbital model used to propagate the satellites’ initial
positions.

Table 1. OE ranges for circular, polar, and low orbits. e: eccentricity, M: mean anomaly, i: inclination, ω:
argument of periapsis, Ω: right ascending node, a: semi-major axis.

OE e [-] M [º] i [º] ω [º] Ω [º] a [km]

From 0 0 90 0 0 6800

To 0 360 100 0 360 7300

Table 2. First six samples of the input training set, containing the orbital necessary information for satellites
0, 1 and 2

Pair ID M1 [rad] i1 [º] Ω1 [rad] a1 [km] M2 [rad] i2 [º] Ω2 [rad] a2 [km]

0-1 4.40 95.2 6.05 7,335 3.04 97.7 2.88 6,906

0-2 4.40 95.2 6.05 7,335 3.11 96.0 4.50 6,746

1-0 3.04 97.7 2.88 6,906 4.40 95.2 6.05 7,335

1-2 3.04 97.7 2.88 6,906 3.11 96.0 4.50 6,746

2-0 3.11 96.0 4.50 6,746 4.40 95.2 6.05 7,335

2-1 3.11 96.0 4.50 6,746 3.04 97.7 2.88 6,906

In the second part of the diagram in Fig. 1a, the SL model is fitted with the training
input-output sequences: 95 % of synthetic samples are used for training, while the re-
maining 5 % is used for validation to avoid overfitting. Details about the model architec-
ture are presented in section 3. Finally, the model parameters learned during training are
saved and used to predict both validation and test sets. The test set is a collection of 48
realistic satellites obtained from Celestrak [16] by gathering all active satellite TLE data
and filtering those in circular, polar, and low orbits. The model performance, presented
in section 4, is obtained by comparing the predicted encounters with the ground truth.

Notice that, to anticipate the encounter, this approach assumes that the satellite not
only needs the trained model and its own OE values but also the OE values of the other
satellite. This information is assumed to be known with enough anticipation.
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3. Supervised Learning Model

Supervised Learning (SL) is a well-known machine-learning method used to solve prob-
lems where a large set of input-output pairs can be obtained yet the mathematical rela-
tionship between them is highly complex, costly, or unknown. While the training stage
is usually costly, the simplicity of the operations in the inference part renders it a cost-
effective approach, which could be suitable for resource-constrained systems like nano-
satellites. However, it is important to clarify that this work focuses on finding the SL
model architecture that best fits the input data. Future research will address tasks con-
cerning resource optimization and trade-off analysis between performance and compu-
tational costs.

Figure 2 illustrates the Fully-Connected Neural Network (FCNN) architecture pro-
posed to map the input OE pairs to the output sequence of encounters. The optimal num-
ber of layers and neurons per layer depends on the number of input and output features.
As stated in section 2, the input set consists of 8 values, while the output describes the
next 48 hours with 576 binary features. Since the number of input features is much lower
than the number of output features, increasing the number of neurons while progressing
deeper into the model is a good approach. Based on this reasoning, multiple architectures
with varying numbers of hidden layers and neurons were evaluated. Among all the eval-
uated models, the one depicted in Fig. 2, with 8 layers and 270,048 trainable parameters,
presents one of the best training curves with high generalization.

Figure 2. SL model architecture consisting of 8 layers. The values within each layer represent the number of
neurons while the word in-between each layer is the applied activation function

Rectified Linear Unit is used as the activation function for the first seven layers.
Contrarily, Sigmoid activation function is used at the output layer to ensure each neuron
value ranges from 0 to 1. Notice that, since the ground truth is a binary signal, a deci-
sion threshold should be applied at the end to decide if the predicted values should be
considered as no encounter (values close to 0) or encounter (values close to 1).
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Other training settings include 500 epochs of training, a batch size of 3000 samples,
the use of a binary cross-entropy loss function, the Adam optimizer with a learning rate
of 0.01, and early stopping based on a patience of 200 epochs.

4. Results

This section presents the performance of the SL model presented in section 3. Two dif-
ferent scenarios are evaluated and compared: the ideal scenario and the realistic scenario.
In the ideal scenarios, the output sequence of encounters used for training, validating,
and testing are computed using Keplerian orbits, an ideal orbital model where exter-
nal perturbations are not considered. Contrarily, in the realistic scenario, SGP4 orbital
model, which includes Earth’s shape and atmospheric drag, is assumed. Poorer results
are expected with SGP4, since output-dependent information, concerning epoch time,
satellite mass, and drag coefficient, is missing in the input data.

In both scenarios, the F1 score is used to quantify the model’s performance for all
satellite pairs. Equation (1) defines F1 as the harmonic mean of Precision (P) and Recall
(R). In our scenario, P is the probability of estimating a contact inside the real timeslot
(viewed as a measure of wasted energy in the prediction), while R assesses the proportion
of successful encounters relative to the total available communication time and serves as
an indicator of missed communication opportunities.

F1 =
2×P×R

P+R
=

2×T P
2×T P+FP+FN

(1)

where T P, FP, and FN stand for True Positive, False Positive, and False Negative, re-
spectively. Note that, to compute T P, FP, and FN, a decision threshold needs to be
applied at the output of the model. For the following results, a threshold of 0.5 is used,
meaning that all model-output values higher or equal to 0.5 are set to one, while values
below this threshold are set to zero.

Figures 3a and 3b show the F1 score obtained for both validation satellite pairs (tri-
angle below diagonal) and test satellite pairs (triangle above diagonal) assuming Kepler
and SGP4 orbital models, respectively. Notice that some concrete pairs present zero F1.
These pairs correspond to those with a limited number of encounters, in which having
zero T P is almost unavoidable, and a single FP or FN leads to an overall F1 of zero.
Given these observations, it is crucial to also consider other metrics, such as Balance
Accuracy (BA) to gain a more comprehensive understanding of the model’s performance.
As observed in equation 2, BA can also be used for unbalanced datasets, and unlike F1,
it is especially useful for critical situations where T P = 0.

BA =
T PR+T NR

2
=

1
2

(
T P

T P+FN
+

T N
T N +FP

)
(2)
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(a) Ideal scenario assuming Kepler orbits to
compute the encounters

(b) Realistic scenario assuming SGP4 orbits to
compute the encounters

Figure 3. F1-score for all validation and test satellite pairs. The triangle below the diagonal corresponds to the
validation results while the triangle above the diagonal contains the test results

where T PR and T NR stand for True Positive Rate (also known as Recall or Sensitivity)
and True Negative Rate (also known as Specificity), respectively.

Table 3 shows the mean BA, as well as the mean F1, mean P, and mean R for both
scenarios. Unexpectedly, despite output-dependent information is missing in the realistic
case with SGP4, the results for both scenarios are very similar, with a mean BA above
90 % and a mean F1 above 80 %. Based on this similarity, it can be inferred that, despite
the stark difference between Keplerian and SGP4 trajectories, the satellite-to-satellite
distance, and therefore, the output sequence of encounters. Consequently, only knowing
the semi-major axis a, the mean anomaly M, and the right-ascending node Ω for two
satellites in circular, polar, and low orbits, the future encounters under realistic SGP4
trajectories can be predicted with a BA of around 95 %. However, this is only true for
small propagation times of less than a week: as time progresses, the influence of missing
initial state information related to Earth’s shape and drag (epoch, satellite mass, and drag
coefficient) gains exponential importance.

Although the results presented in Table 3 are notably good, they also indicate a de-
crease in the validation performance compared to the test performance. This behavior
can be attributed to the fact that the validation dataset has an inclination range between
90 º and 100 º, whereas, in a typical satellite constellation, such as the test Celestrak
dataset, the polar satellites are confined to a much smaller inclination range between 96 º
and 100 º, corresponding to the Sun-synchronous orbits.

Finally, Figure 4 presents a comparison between the encounter ground truth and
the model prediction for three different satellite pairs in the Celestrak test set during
a specific time range of interest. The results show that the model is able to correctly
predict the encounters for unseen and realistic input data, even in complex scenarios
where contacts are really short in time.

Notice that the decision threshold plays an important role in the performance of the
model and should be used depending on the user interests: if the maximum number of
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Table 3. Mean model performance obtained for both validation and test sets and for both Kepler and

SGP4 scenarios

Kepler SGP4

Val. Test Val. Test

BA [%] 92.34 96.54 91.91 95.69

F1 [%] 85.62 92.76 84.98 91.76

P [%] 89.26 94.58 89.33 94.96

R [%] 85.06 93.47 84.19 91.63

(a) Ideal scenario assuming Kepler orbits
to compute the encounters

(b) Realistic scenario assuming SGP4 or-
bits to compute the encounters

Figure 4. Comparison of the true encounters (in blue) with the model prediction (in orange). A decision
threshold of 0.5 (dashed back line) is used to post-process the results and obtain the predicted encounters

encounters want to be detected, the threshold should be reduced; otherwise if the false
encounters want to be minimized, the threshold should be increased. In future works, the
impact of different decision thresholds will be studied.

5. Conclusions

This work presents a supervised machine-learning approach for forecasting encounters
between satellites in low, circular, and polar orbits. The model uses 8-dimensional syn-
thetic input training data obtained by combining various pairs of orbital elements within
the region of interest for low, circular, and polar orbits. The output data is a set of 48-
hour binary time series that describe the encounters of different satellite pairs assuming
isotropic antenna patterns with a maximum threshold distance of 2000 km. Two differ-
ent orbital models are used to compute the output data used for training, validating, and
testing: ideal Kepler model and realistic SGP4, which accounts for the most important
perturbations in LEO orbits. A Fully-Connected Neural Network architecture is used for
training and predicting the output given the input information. The model performance
is analyzed for the two scenarios.

Results show that both scenarios present high and similar performance, with F1 and
BA of around 80 % and 90 %, respectively. On the one hand, these results demonstrate
that a supervised learning model can be used to predict the encounters in polar, circular,
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low, and realistic SGP4 orbits only knowing the relative inclination, the semi-major axis
a, the mean anomaly M, and the right-ascending node Ω. On the other hand, it can be
inferred that, despite the highly notable variation between Keplerian and SGP4 trajecto-
ries, the satellite-to-satellite distance, and therefore, the output sequence of encounters,
remains almost invariant for a propagation time of only two days.

Future work must encompass more challenging frameworks, moving from low, cir-
cular, and polar orbits to low orbits with different eccentricities and a broader range of
inclinations. We expect that larger training sets and more complex Machine Learning
models will be required, providing novel insights for a future onboard AI-assisted de-
vice. In this sense, the computational cost of the model inference should be analyzed and
optimized in the near future to be used in a real application.
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